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Abstract
We present the exact solution of the Richardson–Gaudin models associated
with the SU(3) Lie algebra. The derivation is based on a Gaudin algebra
valid for any simple Lie algebra in the rational, trigonometric and hyperbolic
cases. For the rational case additional cubic integrals of motion are obtained,
whose number is added to that of the quadratic ones to match, as required from
the integrability condition, the number of quantum degrees of freedom of the
model. We discuss different SU(3) physical representations and elucidate the
meaning of the parameters entering in the formalism. By considering a bosonic
mapping limit of one of the SU(3) copies, we derive new integrable models
for three level systems interacting with two bosons. These models include a
generalized Tavis–Cummings model for three level atoms interacting with two
modes of the quantized electric field.

PACS numbers: 02.30.Ik, 03.65.Fd, 31.15.Hz, 32.80.−t

1. Introduction

The Richardson–Gaudin (RG) exactly solvable models [1, 2] can be traced back to the exact
solution of the BCS Hamiltonian given by Richardson in the early 1960s [3] and to the
integrable spin model developed by Gaudin in the seventies [4]. They are diagonalizable
by Bethe ansatz techniques and are the so-called classical limit of two-dimensional vertex
models. We refer the reader to [5], where the connection between the RG models and the
inhomogeneous XXX vertex model with twisted boundary conditions is established in detail
for the case of the rank-1 SU(2) algebra. Previously, in [6] it was shown that the solution of
the Gaudin models (those without linear term in the integrals of motion; cf (19)) associated
with more general Lie algebras, can be used to get a solution of the corresponding classical
Yang–Baxter equations (CYBE). This connection has been largely exploited to diagonalize
the RG models (see [2, 7] for some examples). In practice this method consists of using
the already known solutions of the general-Lie-algebra Yang–Baxter equations (obtained by
using the quantum inverse scattering method) to obtain the corresponding solution of the RG
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models by taking the classical limit of the respective Bethe equations. From a conformal field
theory context, Asorey, Falceto and Sierra [8] obtained the integrals of motion and respective
eigenvalues of the rational RG models for any simple Lie algebra as a limiting case of the
Chern–Simons theory.

Here we follow an alternative and more direct approach to diagonalize the RG models.
Though essentially equivalent, it differs in practice. This approach, where no reference to the
YBE is necessary, is similar to the presented by Ushveridze [9] for the rational case. The
method is based on the introduction of an infinite-dimensional algebra (the Gaudin algebra)
associated with the Lie-algebra of a simple group. By taking a Casimir-like operator in
the Gaudin algebra, one gets the transfer matrix of the YBE approach and, consequently, a
set of independent quadratic integrals of motion. In [10] this formalism was extended to
the trigonometric and hyperbolic cases for the rank-1 algebras SU(2) and SU(1,1). In this
contribution we extend the Gaudin algebra to the trigonometric and hyperbolic cases for any
simple Lie algebra.

As an application of the method, we work out in detail the RG models associated with
the rank-2 SU(3) algebra. Most of the physical applications of the RG models presented
so far are based on the rank-1 algebras SU(2) or SU(1,1). They cover a wide variety
of physical problems ranging from pairing Hamiltonains for fermion or boson systems
[11, 12], to spin models or generalized Tavis–Cumming models [13]. Recently, some
applications to physical problems of RG models based on higher rank algebras have been
published. The detailed derivation of the exact solution was considered for the SO(5) algebra
of proton–neutron pairing in [14] and with more generality including numerical applications in
[15]. In [16] the RG model based on the non-compact SO(3,2) algebra is used in the context of
the Interacting Boson Model II, which describes the interaction between two different species
of bosons (π and ν) for each non-degenerated level. In [7] the SU(4) RG models are used
to describe the interaction between two superconducting systems. Here we discuss different
physical scenarios of potential interest, associated with the SU(3) RG models. They include
dipole–dipole interactions between three level atoms, isospinorial pairing and generalized
Tavis–Cummings models of three level atoms interacting with two different bosonic
modes [17].

Contrary to rank-1 RG models, in higher rank algebras the number of independent integrals
of motion is not exhausted by those obtained from the quadratic Casimir-like operators. More
integrals of motion can be obtained by considering higher degree operators. Unfortunately,
as was shown in [18], the Casimir-like analogy to obtain integrals of motions is valid up to
degree-three Casimir operators. More general formulae are needed to get integrals of motion
of degree greater than three [19]. Nevertheless, since the SU(3) algebra has two independent
Casimir operators of degree two and three respectively, the Casimir-like analogy can be used
to obtain the complet set of integrals of motion. In this contribution it is verified that, for the
rational SU(3) RG models, the number of independent integrals of motion coincides with the
number of quantum degrees of freedom as defined in [20]. For other higher-rank algebras,
which have at least quartic Casimir operators, the more general formulae of [19] are needed
to obtain the complete set of integrals of motion.

This paper is organized as follows. In section 2, the general Gaudin algebra and quadratric
Casimir-like operators are introduced. A particular realization of the Gaudin algebra in terms
of a direct product of L Lie algebra copies and complex valuated functions is introduced. The
conditions to be satisfied by these functions are established, which are a generalization of the
Gaudin conditions of the SU(2) case. Three particular solutions to the Gaudin conditions are
found (rational, trigonometric and hyperbolic) and it is shown how to obtain the corresponding
sets of quadratic integrals of motion from the Casimir-like Gaudin operator. Special interest
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is paid to the introduction of a linear term in the integrals of motion through the addition of a
constant shift to the Cartan members of the Gaudin algebra. Explicit formulae for the quadratic
integrals of motion and their eigenvalues are given. In section 3, focusing on the SU(3) algebra,
we apply the formalism of section 2 to obtain closed expressions for the quadratic integrals
of motion and their eigenvalues in the more general scenario of arbitrary SU(3) irreducible
representations. As discussed above, in order to satisfy the condition of integrability more
integrals of motion are needed, which must be at least cubic in the generators. For the rational
version we present new sets of integrals of motion coming from the Casimir-like Gaudin
operator of degree three, and it is verified that the total number of quantum constants of
motion coincides with the number of quantum degrees of freedom. In section 4, the physical
meaning of the variables appearing in the integrals of motion and eigenvalues is discussed for
different SU(3) physical realizations. Additionally, the limit of infinite degeneracy for a copy
of the SU(3) algebra is used to get a family of integrals of motion related to a generalized Tavis–
Cummings model for three level atoms interacting with two species of bosonic excitations.
Conclusion are given in the last section.

2. Richardson–Gaudin models from a generalized Gaudin algebra

Let us begin by considering a simple Lie algebra, expressed in terms of its Cartan–Weyl
decomposition [21, 22]:

[Sa, Sb] =
∑

c

Cab
c Sc, (1)

where the nonzero structure constants are given by

Ciα
α = −Cαi

α = αi, Cα−α
i = 2

|α|2 αi, C
αβ

α+β = Nα,β,

the Latin index runs over the r Cartan–Weyl members of the Cartan subalgebra (r = rank of
the group), and Greek indexes refer to the roots. αi denotes the component i of the root α.
Associated with this algebra we propose the following infinite-dimensional Gaudin algebra:

[Sa(λ), Sb(µ)] =
∑

c

Cab
c {Xb(λ − µ)Sc(λ) − X∗

a(λ − µ)Sc(µ)}, (2)

where Xa(λ) are meromorphic functions associated with the member a of the Gaudin algebra
and λ is a complex variable. From these commutation rules, it can be proved that the Casimir-
like operators of the Gaudin algebra,

K(λ) ≡
∑
ab

gabSa(λ)Sb(λ), (3)

where gab is the inverse of the Killing form, commute among themselves:

[K(λ), K(µ)] = 0 ∀λ,µ. (4)

A realization of the Gaudin algebra is given by

Sa(λ) =
L∑

m=1

Sa
mXa(zm − λ), (5)

where the index m runs over L different copies of the Lie algebra, Sa
m is a generator of the mth

copy, and zm is a set of completely free real parameters. The operators Sa(λ) act upon the
space V1 ⊗ · · · ⊗ VL, with Vm an irreducible representation (irrep) of the Lie algebra. Given
this specific realization, the commutation rules (2) impose some conditions on the functions
Xa(λ). All the functions associated with the elements of the Cartan subalgebra are equal, real



4128 S Lerma H and B Errea

valuated and antisymmetric:

Xi(λ) ≡ Z(λ) = Z∗(λ) ∀i (6)

Z(λ) = −Z(−λ). (7)

The reality condition on the functions Z(λ) comes from keeping the hermiticity of the
Cartan-subalgebra in its Gaudin counterpart [Si (λ) = (Si (λ))†]. On the other hand, since
Sα(λ) = (S−α(λ))† the functions associated with the Gaudin ladder operators must satisfy

Xα(λ) = X∗
−α(λ) ∀α. (8)

Additionally they have to be anti-hermitic:

Xα(λ) = −X∗
α(−λ). (9)

The last conditions that have to be satisfied by the functions Z(λ) and Xα(λ) are a generalized
version of the SU(2)-Gaudin conditions:

Xα(µ − λ)Xα(λ) + Z(λ − µ)Xα(µ) − Z(λ)Xα(µ) = 0 ∀α

Xβ(µ − λ)Xα+β(λ) + Xα(λ − µ)Xα+β(µ) − Xα(λ)Xβ(µ) = 0 ∀α, β such that

α + β is a root. (10)

Using the structure constants, equations (2), (6) and (8), and denoting the Gaudin-operators
by the more common notation Si (λ) = Hi (λ) and Sα(λ) = Eα(λ), the following form for the
Gaudin algebra is obtained:

[Hi (λ), Eα(µ)] = αi{Xα(λ − µ)Eα(λ) − Z(λ − µ)Eα(µ)} (11)

[Eα(λ), E−α(µ)] = 2

|α|2 X∗
α(λ − µ){α · H(λ) − α · H(µ)} (12)

[Eα(λ), Eβ(µ)] = Nα,β{Xβ(λ − µ)Eα+β(λ) − X∗
α(λ − µ)Eα+β(µ)}, (13)

where α · H = ∑r
i αiHi . From equation (12) it is clear that the Cartan subalgebra members

of the Gaudin algebra are defined up to a constant term, which can be freely added without
altering the commutation relationships:

Hi (λ) =
∑
m

Hi
mZ(zm − λ) + ki1, (14)

where 1 is the unity operator in V1 ⊗ · · · ⊗ VL, and ki are r free real parameters.
In the rest of the paper, we will only consider the case where all the functions associated

with the positive root operators are equal (Xα(λ) = X(λ),∀α > 0) and let for the future a
more general discussion. In this case, three solutions to the Gaudin conditions (10) are as
follows.

• The rational solution

X(zn − zm) = Z(zn − zm) = 1

zn − zm

. (15)

• The trigonometric solution

X(zn − zm) = exp[i(zn − zm)]

sin(zn − zm)
, Z(zn − zm) = cot(zn − zm). (16)
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• The hyperbolic solution

X(zn − zm) = exp[i(zn − zm)]

sinh(zn − zm)
, Z(zn − zm) = coth(zn − zm). (17)

The Casimir-like operator defined in (3) acts as a generator of the quadratic RG integrals
of motion. From (10) and their solutions (15), (16) and (17), it is easy to show that the operator
K(λ) can be written as

K(λ) =
L∑

m=1

C(2)
m

(λ − zm)2
− 2

L∑
m=1

Rm

λ − zm

+ · · · , (18)

where C(2)
m is the Casimir of degree two of the mth Lie algebra copy. The operators Rm read

Rm = ξm +
L∑

n(n�=m)

(∑
α>0

|α|2
2

(
X(zn − zm)Eα

mE−α
n + X∗(zn − zm)E−α

m Eα
n

)

+ Z(zn − zm)

r∑
i=1

Hi
mHi

n

)
, (19)

where the linear term ξm = ∑r
i=1 kiHi

m is a member of the m th Cartan subalgebra coming
from the constant term shift introduced in (14). Note that the coefficients ki do not have an
index m, i.e., even if each ξm belongs to a different copy of the Lie algebra, the same linear
combination with respect to the corresponding basis of the Cartan subalgebra is assumed for
all the copies.

The commutativity of the Casimir-like Gaudin operators (4) implies commutativity among
the set of operators Rm:

[Rm, Rn] = 0 ∀n,m = 1, . . . , L. (20)

The eigenfunctions and eigenvalues of the set of integrals of motion Rm are obtained by
considering a Bethe ansatz, which is solely written in terms of the lowering operators of
the Gaudin algebra and a set of parameters to be determined. This calculation is performed
in [9] for the rational case. Repeating the same steps for the trigonometric and hyperbolic
cases is a straightforward but laborious task. It consists of applying the Casimir-like Gaudin
operator to the ansatz. This application yields one term proportional to the original ansatz
and terms which are not proportional. From the former one, one can obtain the eigenvalues
of Rm by performing a similar expansion as in (18). By imposing the annulation of all the
non-proportional terms, one gets the equations that determine the parameters entering in the
ansatz. We present the results. The eigenvalues of the operators Rm are given by

rm =
r∑
ab

ξaFab�
b
m +

L∑
n(n�=m)

Z(zn − zm)�m · F · �n +
r∑

a=1

Ma∑
k=1

�a
m

|αa|2
2

Z
(
zm − Ea

k

)
, (21)

where αa are the simple roots of the algebra (there are as many simple roots as the rank of the
algebra). The r coefficients ξa are related to the parameters ki of the linear term through:

ξm =
∑

i

kiHi
m =

∑
ab

ξaFabhb
m, (22)

where hb
m are the members of the Chevalley basis of the mth Cartan subalgebra. The Chevalley

basis is defined as

ha
m = 2

|αa|2 (αa · Hm),
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where αa is one of the r simple roots and Hm is the already introduced Cartan–Weyl basis of the
Cartan subalgebra. Fab is a r×r matrix called the quadratic form of the algebra, which is related
to the Cartan matrix through Fab = (A−1)ab

|αb|2
2 . The Cartan matrix codifies completely the

structure of the algebra and is defined in terms of the simple roots: Aab = 2
|αa |2 (αa, αb), where

the scalar product of the roots is defined as (αa, αb) = ∑
i α

i
aα

i
b. �b

m are the Dynkin labels
(the eigenvalues of the Chevalley basis) in the highest weight state of the mth irreducible
representation Vm, and the product �m · F · �n is equal to

∑
ab �a

mFab�
b
n. The variables

Ea
k entering in (21) determine the common eigenfunctions of the operators Rm, and are the

solutions of the following Richardson–Bethe equations:
r∑

b=1

Mb∑
k′=1

AbaZ
(
Eb

k′ − Ea
k

) −
L∑

m=1

�a
mZ

(
zm − Ea

k

) = ξa, (k = 1, . . . ,Ma). (23)

The number of these parameters Ea
k is

Ma = 2

|αa|2
r∑

b=1

Fba

(∑
m

�b
m − λb

0

)
, (24)

where λb
0 are the eigenvalues of the overall operators

∑L
m hb

m (the sum of the Chevalley basis
over all the copies). These overall operators commute with the integrals of motion Rm (see
(35)), therefore their eigenvalues

(
λb

0

)
are conserved quantities for any Hamiltonian defined

as a function of the integrals of motion Rm. Equations (19), (21) and (23) extend the results
presented in [8, 9] for the rational case, to the trigonometric and hyperbolic ones.

3. The SU(3) algebra

3.1. Quadratic integrals of motion

In this section, we will apply the formulae of the previous one in the particular case of the
rank-2 algebra SU(3). We consider L copies of a U(3) algebra:

[Kαβm, Kα′β ′m] = δβα′Kαβ ′m − δαβ ′Kα′βm, (25)

where the index m refers to the mth copy of the Lie algebra, and α, β = 1, 2, 3. From these
commutations rules it is easy to prove that [K11m + K22m + K33m, Kαβm] = 0 ∀α, β. Therefore
this sum must be proportional to the operator unity in the SU(3)-irrep Vm and, consequently,
an integral of motion:

K11m + K22m + K33m ≡ nm = nm1. (26)

This condition reduces the number of independent generators from 9 to 8, the dimension of
the SU(3)-algebra. A Cartan decomposition of the SU(3) algebra is as follows.

• A maximal Abelian subalgebra of Hermitian operators (the Cartan subalgebra H) is
provided by the operators Kααm. However, due to the condition (26) only two of them are
independent. Two different Cartan subalgebra bases adequate for our purposes are the
Cartan–Weyl basis (we are using the normalization convention of [21]):

H1
m = K11m − K33m√

2
, H2

m = 2K22m − K33m − K11m√
6

, (27)

and the Chevalley basis

h1
m = K11m − K22m, h2

m = K22m − K33m. (28)

These bases generate the Cartan subalgebra Hm = span
(
H1

m, H2
m

) = span
(
h1

m, h2
m

)
.
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• The positive root vector space is spanned by the raising operators:

E+
m = span(Kαβm) with β > α. (29)

• The lowering operators are the Hermitian conjugated of the previous ones. The negative
root vector space is

E−
m = span(Kαβm) with β < α. (30)

The mth Lie algebra of SU(3) is given by the direct sum LSU(3)m = E−
m

⊕
Hm

⊕
E+

m. The
roots of the algebra can be obtained from the commutation relations between the Cartan–Weyl
basis and the root vectors:[

Hi
m, Kαβm

] = αi
αβKαβm α �= β. (31)

The algebra SU(3) has three positive roots (β > α), they are

α12 = (
α1

12, α
2
12

) = 1√
2
(1,−

√
3)

α23 = (
α1

23, α
2
23

) = 1√
2
(1,

√
3)

α13 = (
α1

13, α
2
13

) = (
√

2, 0).

(32)

It is easy to see that the simple roots are α12 and α23, from which all the other roots
can be obtained by a linear combination of integer coefficients. The non-simple positive
root is α13 = α12 + α23, whereas the negative roots are α21 = −α12, α32 = −α23, and
α31 = −α12 − α23. All the roots have square norm equal to 2: |ααβ |2 = 2. The Cartan matrix

is A = ( 2 −1
−1 2

)
. From this expression we obtain the quadratic form F = 1

3

(
2 1
1 2

)
.

By using all these results, we can write the integrals of motion (19) for the SU(3) case.
The rational integrals of motion read

Rm = −ξ 1K22m − (ξ 1 + ξ 2)K33m + Cm1 +
L∑

n(n�=m)

∑
β

∑
α KαβmKβαn

zn − zm

. (33)

For the trigonometric and hyperbolic cases (ct(zm − zn) = cot(zm − zn) and ct(zm − zn) =
coth(zm − zn) respectively), the integrals of motion are

Rm = −ξ 1K22m − (ξ 1 + ξ 2)K33m + Cm1 +
L∑

n(n�=m)

[
ct(zn − zm)

∑
β

∑
α

KαβmKβαn

+ i
∑
β>α

(KαβmKβαn − KβαmKαβn)

]
. (34)

The constant term appearing in (33) and (34) is Cm = −(nm/3)
∑

l(l �=m) Z(zl − zm)nl +
(2ξ 1+ξ 2)

3 nm.

3.2. More integrals of motion

By direct calculation, it can be shown that the overall operators

Nα =
L∑

m=1

Kααm, with α = 1, 2, 3, (35)

commute (in the trigonometric, hyperbolic, and rational cases) with the integrals Rm. One
of these operators must be independent of the already introduced integrals of motion. From
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(26) it is clear that N1 + N2 + N3 = ∑
m nm, and from the integrals of motion (33) or

(34) it is derived that
∑

m(Cm1 − Rm) = ξ 1N2 + (ξ 1 + ξ 2)N3. This fact implies that the
integrals Rm do not exhaust all the possible integrals of motion. In [18] it was shown for the
rational case that the Casimir-like Gaudin operators of degree three commute among them
and with the quadratic Casimir-like operators (3). The SU(3) Casimir operator of degree
three is C(3) = ∑

αβγ KαβKβγ Kγα , from here it is clear that the Gaudin counterpart must
read K(3)(λ) = ∑

αβγ Kαβ(λ)Kβγ (λ)Kγα(λ), with Kαβ(λ) a generator of the SU(3)-Gaudin
algebra. This family of operators satisfies, at least for the rational case, [K(3)(λ), K(3)(µ)] = 0
and [K(3)(λ), K(µ)] = 0,∀λ,µ. By expanding K(3)(λ), as we did for K(λ) in (18), we get

K(3)(λ) = −
L∑

m=1

C(3)
m

(λ − zm)3
+ 3

L∑
m=1

P3m

(λ − zm)2
− 3

L∑
m=1

R3m

λ − zm

+
3∑

α=1

Aα1, (36)

where C(3)
m is the cubic-Casimir of the mth Lie algebra copy, and the operators P3m and R3m

are

P3m =
L∑

n(n�=m)

L∑
k(

k �=n

k �=m
)

∑
αβγ KαβmKβγnKγαk

(zn − zm)(zk − zm)
+

L∑
n(n�=m)

∑
αβγ KαβnKβγm(Kγαn − Kγαm)

(zm − zn)2

+
∑

n(�=m)

∑
αβ(AαKαβmKβαn + AαKαβnKβαm)

zm − zn

+
∑

α

AαAαKααm (37)

R3m =
L∑

n(n�=m)

∑
αβγ KαβmKβγmKγαn

zm − zn

+
∑
αβ

AαKαβmKβαm. (38)

The coefficients Aα are related to the parameters of the linear term in Rm: A1 =
(2ξ 1 + ξ 2)/3, A2 = (ξ 2 − ξ 1)/3 and A3 = −(ξ 1 + 2ξ 2)/3. The operators P3m, R3m and
Rm form a complete set of mutually commuting operators. From the expression for the
integrals P3m, it is easy to show that the three operators Nα (35) can be expressed as a linear
combination of the operators Rm, nm and P3m. The commutativity of the cubic Casimir-like
Gaudin operators has been proved in [18] for the rational case, we think this result can be
extended to the trigonometric and hyperbolic ones.

3.3. Highest weight states and quantum-dynamical degrees of freedom

The highest weight states (unique for any finite irrep of a simple algebra) are defined by the
conditions:

Kαβm|�m〉 = 0 for all β > α. (39)

The eigenvalues of the members of the Chevalley basis in these states are integer positive
numbers and allow us to label the irrep,

h1
m|�m〉 = �1

m|�m〉 = (k1m − k2m)|�m〉 h2
m|�m〉 = �2

m|�m〉 = (k2m − k3m)|�m〉, (40)

where kαm are the eigenvalues of the operators Kααm in the highest weight state, and we have
used (28). The numbers [k1mk2mk3] determine the Young diagram of the irrep Vm and satisfy
k1m + k2m + k3m = nm . All the members of the irrep can be obtained by acting the lowering
operators upon the previous highest weight state.

In general, once we have completely established for each m the values of the set(
�1

m,�2
m, nm

)
(or equivalently [k1mk2mk3m]), we need three extra numbers for each copy
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of the Lie algebra to determine a complete basis of the quantum system. Consequently a
complete basis for the Hilbert space V1 ⊗ · · · ⊗ VL is

|
〉 =

∣∣∣∣∣∣∣
n1 · · · nm · · · nL(

�1
1,�

2
1

) · · · (
�1

m,�2
m

) · · · (
�1

L,�2
L

)
t11, t21, t31 · · · t1m, t2m, t3m · · · t1L, t2L, t3L

〉
ρ

(41)

where ρ is a multiplicity number to take account of any other completely degenerated quantum
number not considered explicitly here. The labels t1m, t2m, t3m are the three necessary quantum
numbers to characterize completely a state within an SU(3) irrep. The number of non-
completely degenerated quantum numbers necessary to determine unambiguously a basis’
member is the number of quantum-dynamical degrees of freedom of the system [20]. From
(41) it is deduced that, in the present case, the number of quantum degrees of freedom is

d = 3L. (42)

To guarantee the integrability of the system we need 3L integrals of motion. L of them are
provided by the operators Rm, the other 2L integrals of motion are the polynomial operators
of degree three (R3m and P3m) introduced in the previous subsection.

3.4. Eigenvalues

We can explicitly write the eigenvalues of the operators (33) and (34), which are the SU(3)
version of the general formula (21):

rm = −ξ 1k2m − (ξ 1 + ξ 2)k3m + Cm +
L∑

n(n�=m)

(
Z(zn − zm)

3∑
α=1

kαmkαn

)

+ (k1m − k2m)

M1∑
k=1

Z(zm − Ek) + (k2m − k3m)

M2∑
l=1

Z(zm − ωl), (43)

where Cm is the same constant found in the operators (33) and (34), and we have redefined
the parameters Ek ≡ E1

k and ωl ≡ E2
l . These parameters determine the eigenfunction of the

operators Rm, and are the solutions of the following Richardson–Bethe equations:

M1∑
k′(k′ �=k)

2Z(Ek′ − Ek) −
M2∑
l=1

Z(ωl − Ek) −
L∑

m=1

(k1m − k2m)Z(zm − Ek) = ξ 1

(k = 1, . . . , M1) (44)

−
M1∑
k=1

Z(Ek − ωl) +
M2∑

l′(l′ �=l)

2Z(ωl′ − ωl) −
L∑

m=1

(k2m − k3m)Z(zm − ωl) = ξ 2

(l = 1, . . . ,M2). (45)

To determine the number of parameters Ek and ωl (M1 and M2 respectively), note that the
members of the overall Chevalley basis can be expressed in terms of the integrals (35),∑

m

h1
m = N1 − N2,

∑
m

h2
m = N2 − N3,
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consequently their eigenvalues are
(
λ1

0, λ
2
0

) = (N1 − N2, N2 − N3). By using this result, the
relation

∑
m(k1m + k2m + k3m) = N1 + N2 + N3, the quadratic form and the labels of the SU(3)

irreps (40) in the general formula (24), one gets

M1 =
L∑
m

k1m − N1, M2 = N3 −
L∑
m

k3m. (46)

The values M1 and M2 allow us to label the different invariant subspaces of the Hilbert
space. We denote these subspaces by V (M1,M2) ⊂ V1 ⊗ · · · ⊗ VL. The different solutions
of the Richardson–Bethe equations define a set of eigenfunctions which span entirely the
subspace V (M1,M2). By considering all the possible values of M1 and M2 and the set of
complete solutions of the corresponding Richardson–Bethe equations, we get a basis for the
entire Hilbert space V1 ⊗ · · · ⊗ VL = ⊕

M1,M2
V (M1,M2).

For a given set of L SU(3) irreps ([k1mk2mk3m] with m = 1, . . . , L), the possible values
of M1 and M2 are

0 � M1 �
∑
m

(k1m − k3m)

max

(
0,M1 −

∑
m

(k1m − k2m)

)
� M2 �

∑
m

(k1m − k3m)

+ min

(
0,M1 −

∑
m

(k1m − k2m)

)
.

4. Physical models related to the SU(3) RG models

4.1. Particle–hole representation

An explicit realization of the U(3) algebra (25) can be obtained by considering 
m three-level
atoms of type m:

Kαβm =

m∑
µ=1

c†αµmcβµm, (47)

where c†αµm and cβµm are fermion creation and annihilation operators, respectively. The
indexes α and β label each of the three levels, whereas the index µ runs over all the atoms of
type m. We can introduce different types of atoms (let us say L different types), each type of
atom associated with a copy of the SU(3) algebra (m = 1, . . . , L).

The operators Kαβm have a simple physical interpretation. For α = β the operators are the
number operators: Kααm = nαm. The raising operators (α < β) take a particle (excitation)
from a level to a lower one, whereas the lowering operators (α > β) take a particle from a
level to a higher one. In this context, the condition (26) is simply the conservation of the
number of particles in each three-level atom.

The linear terms appearing in the integrals of motion (33) and (34) are related to the
energies of the atoms’ levels, whereas the quadratic terms represent two kinds of interactions:
(a) the terms with α �= β include three different dipole–dipole interactions among the atoms,
which are associated, respectively, to the transitions 1 ↔ 2, 1 ↔ 3 and 2 ↔ 3 (see figure 1),
(b) the terms with α = β are monopole interactions (nαmnαn).

We discuss now the meaning of the labels that characterize the SU(3) irreps (the set(
�1

m,�2
m

)
and nm, or [k1m, k2m, k3m]). Without loss of generality, we can consider k1m = 
m
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(a) (b)

Figure 1. (a) Dipole–dipole transitions between atoms of type m and n. (b) Pictorial representation
of a highest weight state for atoms of type m.

(
m − k1m is the number of atoms without any particle in their levels, which are completely
decoupled of the rest and do not contribute to the rm eigenvalues). The atoms of each type can
be classified according to the number of particle in their levels: (a) unblocked atoms are those
with only a particle in their levels. These atoms have all the dipole transition allowed. (b)
Semi-blocked atoms are those with two particles in their levels. The dipole transitions between
the occupied levels are forbidden by Pauli blocking. (c) Blocked atoms are those with all
their levels occupied. These atoms have all the dipole transitions forbidden, and interact with
the others only by the monopole interaction. The Dynkin labels of the irreps determine the
number of atoms of each type in the previous situations: �1

m = k1m − k2m � 
m indicates
the number of type-m unblocked atoms, �2

m = k2m − k3m is the number of semi-blocked
atoms of type m, and the value k3m indicates the number of blocked atoms of type m. A
representation of a highest weight state is depicted in figure 1. The case where all the atoms
are in a unblocked situation corresponds to �1

m = 
m,�2
m = 0 and k3m = 0. Note that

integrals of motion (35) guarantee that the total populations (irrespective on the type of atom)
in each level (Nα, α = 1, 2, 3) are conserved quantities. The number of parameters Ek and
ωl in the Richardson–Bethe equations (46) has a simple meaning: the number of Ek’s (M1) is
equal to the number of atoms (of any type) with the first level unoccupied, whereas the number
of ωl’s (M2) is the overall number of unblocked and semi-blocked atoms with the third level
occupied.

4.2. Particle–particle representation

Another possible realization of the SU(3) algebra is

K21m = c†↓mc†0m K12m = c0mc↓m K11m = 1 − n0m

K31m = c†↑mc†0m K13m = c0mc↑m K22m = n↓m

K32m = c†↑mc↓m K23m = c†↓mc↑m K33m = n↑m,

(48)

where c†σm and cσm are, respectively, fermionic creation and annihilation operators, and nσm

are the number operators c†σmcσm. The two lowering operators K21 and K31 create a pair of
particles and thus form a spinorial pair:

Pm =

P†

↑m

P†
↓m


 ≡

(
K31m

K21m

)
. (49)
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The other lowering operator (K32m ≡ T+m) is the ladder operator of a SUT(2) subalgebra
of SU(3): [

T+m, P†
↓m

] = P†
↑m. (50)

It is well known that the particle-particle representation of the RG models associated with the
SU(2) algebra describes the interaction between scalar pairs [12], whereas the SO(5) version
describes the vectorial pairing, i.e., the interaction between pairs forming a triplet [15]. The
SU(3) version presented here is associated with an interaction between pairs forming a doublet,
we call it spinorial pairing or T = 1/2 pairing. As was done in [15] for the SO(5) algebra, from
a linear combination of the rational integrals of motion (33), the following pairing Hamiltonian
for spinorial pairs results

HT =1/2 =
∑
m

zm(n↑m + n↓m) + g
∑
mn

P†
m · Pn, (51)

where the scalar product is
∑

σ=↑↓ P†
σmPσn, and we have fixed the parameters ξ 1 = 1/g and

ξ 2 = 0. In this particle–particle representation of the SU(3) algebra, the Dynkin labels of
the highest weight states are associated with the number of unpaired particles in each single
particle level m and their transformation properties under the subgroup SUT(2). The number
of variables Ek and ωl is, respectively, the number of pairs and the number of ↑-particles in
those pairs.

4.3. Tavis–Cummings models for three level systems and two bosons

In this section, we derive another integrable model, which consists of L copies of the SU(3)
algebra interacting with two different bosons. This model is derived from the trigonometric
version of the previous section in two steps: first we take the bosonic mapping of one copy of
the SU(3) algebra (let us say the copy 0), and then we let the degeneracy 
0 of this bosonized
copy go to infinite.

We assume the SU(3) irrep
(
�1

0,�
2
0

) = (
0, 0) for the copy to be bosonized. In this case
the bosonic mapping for the SU(3) algebra is [23]

K11 → 
0 − a†a − b†b K22 → a†a K33 → b†b

K31 → b†
√


0 − a†a − b†b K32 → b†a K21 → a†
√


0 − a†a − b†b,
(52)

where a† and b† are boson operators. This mapping is hermitic; therefore, the mapping of
the operators Kαβ with β > α can be obtained by conjugating the previous ones. In the limit

0 → ∞ the previous mapping is reduced to

K11 → 
0 − a†a − b†b K22 → a†a K33 → b†b

K31 → i
√


0b† K32 → b†a K21 → i
√


0a†,
(53)

where the imaginary factor i is introduced for future convenience. We consider now the
trigonometric integrals of the RG model (34) for a system of L + 1 copies of the Lie algebra:
m = 0, 1, . . . , L. Then we bosonize the copy with the ‘0’ label using (53). In order to avoid
divergences in taking the limit 
0 → ∞, we define a new set of variables εm by using the
freedom we have to choose the parameters zm. These new variables are defined through

cot(zm − z0) = εm√

0

, m = 1, . . . , L. (54)

From this definition and the trigonometric identity (cot(A − B) = (cot(A) cot(B) +
1)/(cot(B) − cot(A)), it is easy to show that in the limit 
0 → ∞

cot(zm − zn) →
√


0

εn − εm

. (55)
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By substituting these results in the trigonometric integrals R0 and Rm(34), we obtain

R̂0 = −ζ 1a†a − (ζ 1 + ζ 2)b†b + C01 +
L∑

n=1

(a†K12n + aK21n + bK31n + b†K13n + εnK11n)

R̂m = −ζ 1K22m − (ζ 1 + ζ 2)K33m + Cm1 +
L∑

n(n�=m)

∑
αβ KαβmKβαn

εm − εn

− (a†K12m + aK21m + bK31m + b†K13m + εmK11m), (56)

where we have rescaled the operators R0 and Rm (R̂0 ≡ R0/
√


0 and R̂m ≡ Rm/
√


0),
dropped the terms with inverse powers of

√

0, and defined new variables:

ζ a = ξa

√

0

. (57)

The constants in the integrals of motion (56) are C0 = −(1/3)
∑

l εlnl + (2ζ 1 + ζ 2)(
0/3) and
Cm = (εmnm)/3 +

∑′
l nl/(εl − εm) + (2ζ 1 + ζ 2)nm/3.

To obtain the eigenvalues of the previous operators, we take the eigenvalues (43), with
Z(zj − zi) and Z(Ek − zi) substituted by cotangent functions, and then the limit 
0 → ∞.
Before performing this limit we introduce, as we did in (54), two new sets of variables
associated with the parameters Ek and ωk:

cot(z0 − Ek) = − xk√

0

, cot(z0 − ωl) = − yl√

0

. (58)

The same trigonometric identity that yields (55) allows us to write the limit 
0 → ∞ of the
following functions:

cot(zm − Ek) →
√


0

xk − εm

, cot(zm − ωl) →
√


0

yl − εm

, cot(ωl′ − ωl) →
√


0

yl − yl′
,

cot(Ek − El) →
√


0

xl − xk

, cot(Ek − ωl) →
√


0

yl − xk

,

(59)

where we have used the definition (54). With the limit values of the previous cotangent
functions, the eigenvalues (43) become

r0 =
L∑

n=1

k1nεn + C0 −
M1∑
k=1

xk

rm = −ζ 1k2m − (ζ 1 + ζ 2)k3m + Cm +
L∑

n=1(n�=m)

∑3
α=1 kαmkαn

εm − εn

− k1mεm (60)

+ (k1m − k2m)

M1∑
k=1

1

xk − εm

+ (k2m − k3m)

M2∑
l=1

1

yl − εm

, (61)

which are the eigenvalues of the operators (56). Note that the term C0, that diverges in the limit

0 → ∞, appears explicitly both in the operator and its eigenvalue, then we can easily get rid
of it. εm are free parameters and the variables xk and yl are solutions of the Richardson–Bethe
equations in the limit 
0 → ∞. To derive them, we consider the Richardson–Bethe equations
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in the trigonometric case, which can be read from equations (44) and (45) with Z substituted
by cotangent functions. Then, using (59) we obtain

M1∑
k′(k′ �=k)

2

xk′ − xk

−
M2∑
l=1

1

yl − xk

−
L∑

m=1

k1m − k2m

εm − xk

− xk = −ζ 1, (k = 1, . . . ,M1)

−
M1∑
k=1

1

xk − yl

+
M2∑

l′(l′ �=l)

2

yl′ − yl

−
L∑

m=1

k2m − k3m

εm − ωl

= −ζ 2, (l = 1, . . . ,M2).

(62)

Note that the resulting Richardson–Bethe equations are identical to those in the rational case
except by the linear term in the first line. The integrals of motion (35) are now

N3 =
L∑

m=1

K33m + nb N2 =
L∑

m=1

K22m + na N1 =
L∑

m=1

K11m + 
0 − na − nb. (63)

The physical meaning of the Dynking labels (�1
m,�2

m) and nm is not modified by the
introduction of the bosons, and it is the same already discussed above. The number of
parameters xk and yl (M1 and M2) in the Richardson–Bethe equations (62) can be obtained
from the general formula (46), by extending the sum to the bosonized copy, and noting that
the Young labels associated with it are [k10, k20, k30] = [
0, 0, 0].

One of the simplest Hamiltonian that can be derived from the previous integrals of motion,
is obtained by considering just one non-bosonized copy of the SU(3) algebra. Therefore L = 1
and we have two integrals of motion: R0 and R1. By taking a linear combination of these
integrals we arrive to

H = z0(R̂0 − C01) + z1(R̂1 − C11)

= ωana + ωbnb + η2K22 + η3K33 + g(a†K12 + aK21 + bK31 + b†K13), (64)

where Kαβ are the generators of the non-bosonized copy. The parameters of the Hamiltonian
are related to the RG parameters by

ζ 1 = ωa(�η − �ω)

g�ω

, ζ 2 = �η − �ω

g
, ε1 = ωa�η − �ωη2

g�ω

, (65)

and the constants z0 and z1 are

z0 = −g
�ω

�η − �ω

, z1 = −g
�η

�η − �ω

, (66)

with �ω ≡ ωb − ωa and �η ≡ η3 − η2. The previous Hamiltonian describes the interaction
between a set of 
1 identical three level atoms and two modes of the electric field in
the so-called rotating-wave approximation [17], and is a generalized version of the Tavis–
Cummings model for three level atoms. If we write the Hamiltonian (64) in the particle–
particle representation, we obtain the interaction between a doublet of pairs and a doublet of
bosons:

H = ω+n+ + ω−n− + ε↑n↑ + ε↓n↓ + g(P† · b + P · b†), (67)

where we have redefined the bosons a† → b†
−, b† → b†

+, and the scalar product, P† · b, is
P†

↑b+ + P†
↓b−. More complex Hamiltonians can be derived from the integrals (56), but we will

not discuss them here.
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5. Conclusions

In this contribution we introduced a Gaudin algebra valid for any simple Lie algebra in the
rational, trigonometric and hyperbolic cases. With this algebra, we derived the complete set
of quadratic RG integrals of motion, and found their respective eigenvalues. Focusing this
formalism on the rank-2 SU(3) algebra, we worked out in detail the RG models. For the rational
case, expressions for the integrals of motion of degree three were obtained, and it was verified
that their number is the necessary to match the number of integrals of motion with the number
of degrees of freedom of the quantum model. Some physical applications of the SU(3) models
were discussed. The physical meaning of the variables in the RG formalism were discussed
for two different representations of the SU(3) algebra, namely, the particle–hole representation
and the particle–particle one. By taking the trigonometric version of the models, we derived a
new family of integrable models which are related to a generalization of the Tavis–Cummings
model to three level atoms and two bosons. It was beyond the scope of this contribution
to explore all the possible physical applications of the SU(3) RG models; some examples
were given and others are expected to come. We think that we have put the ground for more
detailed studies, such as numerical studies of the solutions and comparison with approximative
techniques in physical scenarios beyond the limits of traditional diagonalization methods. The
formalism presented here can be easily applied to other Lie algebras. Some physically
relevant examples are the SU(4) and SO(5) versions in the description of high temperature
superconductors [24], the SO(8) version for isovector–isoscalar pairing [25], and the SU(n)
versions which include generalized Tavis–Cummings models for n-levels atoms interacting
with n − 1 different bosonic modes. The formalism can likewise be extended to the elliptic
RG models, where no linear term in the quadratic integrals of motion is allowed. Another
interesting extension of the present contribution is to derive more general solutions to the
Gaudin conditions (10), using the very well-studied solutions to the classical Yang–Baxter
equations [26]. Finally, the higher rank RG models can be useful to shed some light in the
non-completely well established definition of number of degrees of freedom in finite quantum
systems. In this contribution, the definition of integrability coming from the Yang–Baxter
equation was linked to that coming from the equality between the number of quantum degrees
of freedom and the number of independent integrals of motion. This latter definition, initially
supposed to be exclusively related to dynamical symmetric models, can be extended, as shown
in this contribution, to the RG models, which are not necessarily dynamical symmetric.
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